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        The Heat Vulnerability Index provided by NYC Environmenal & Health Data Portal provides an estimation of the heat 
vulnerability of neighborhoods in the city and charactertistcis that affect the vulnerability, including surface temperature, 
green space, access to home air conditioning, and non-white population. Although the index provides useful infwormation 
for assuming heat vulnerability in the city, the data resolution is limited at census tracts, which are too coarse for an in-depth 
research. In addition, the current HVI does not factor into the impact of demographic composition, income, and disability in 
determining heat vulnerability, which leaves space for furthur modification and improvement with new methodologies.
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INTRODUCTION
        The assessment and mitigation of heat vulnerability in urban environments are critical considerations 
in contemporary geographic research, particularly in the context of climate change and urbanization. 
Drawing inspiration from McHarg’s Ecological Method, which emphasizes the integration of natural and 
built environment factors in geographic analysis, this research endeavors to enhance our understanding of 
heat vulnerability by combining layered transparency mapping with advanced geospatial methodologies.

       At the heart of this study lies the exploration of the Heat Vulnerability Index (HVI), While the HVI 
provided by the NYC Environmental & Health Data Portal offers valuable insights into neighborhood-
level heat vulnerability, its current resolution at census tracts presents limitations for in-depth analysis. 
Moreover, the exclusion of certain demographic and socioeconomic variables underscores the need for 
refinement and augmentation of existing methodologies.

       This research aims to address these limitations by employing a suite of geoprocessing techniques, 
including Principal Component Analysis (PCA), ISO Clustering, Anselin Local Moran’s I, and Natural Break 
Reclassification. By leveraging multiple geographic information software and algorithms, we seek to 
elucidate the impact of different processing techniques on the spatial distribution and accuracy of the HVI. 
Additionally, we aim to investigate the influence of factors such as data resolution, interpolation algorithms, 
and modeling assumptions on the construction and interpretation of the HVI.
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RESEARCH QUESTIONS

1. What is the impact of different geoprocessing techniques on the HVI?

2. How do different geoprocessing techniques infl uence the spatial 
distribution and accuracy of the HVI?

• To what extent do factors such as data resolution, interpolation algorithms, 
and modeling assumptions impact the construction and interpretation of the 
HVI?

• How can the choice of geoprocessing technique affect the identifi cation of 
high-risk areas and the prioritization of interventions to mitigate heat-related 
risks in urban environments?



Surface Temperature Impervious Surface Tree Canopy Coverage
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DATA CLEANING

Cleaning and Preparing Raster Dataset

       To prepare essential data for indexing and weighting processes and future analysis, initial data 
cleaning is necessary for climate, built environment and demographic datasets. As climate and built 
environment data is by 15m x 15m resolution in raster, while demographic data is based on census block 
group unit in vectors, different data cleaning processes apply to the two data sources.

       Using specifically tailored programs and codes, temporary surface temperature data is extracted 
from the surface temperature bundle in Landsat data provided by USGS. To estimate the highest 
potential vulnerability, mean surface temperature (in Fahrenheit) is calculated from July-to-August surface 
temperature data in 2021. As important components that can reflect factual/sensible heat in vulnerability 
assessment, the updated data in 2021 of impervious surface from NLCD Imperviousness Dataset and 
canopy coverage from NLCD Tree Cover Dataset are used in the analysis. These datasets are then clipped 
by the administrative boundary of New York City and water/land boundary, provided by the city planning 
department. To unify the scope of the weighting model, zonal statistics (using zonal average) are applied to 
turn continuous raster values into discrete values in the unit of census block groups in New York City. 

        After data cleaning, each census block groups are assigned data of 1) Surface temperature (in 
Fahrenheit); 2) Percentage of Impervious Surface (%); 3) Percentage of Tree Canopy Coverage (%).



Median Income
Low

High

Disability Rate Elderly Population Median Income

Youth PopulationPoverty RateNon-White Rate

9

Cleaning and Preparing Vector Dataset
      Demographic and socio-economic data used in the research are provided by two sources: The ACS 
Community Survey Data (most recent version used) provides information related to age and sex, racial 
components, income information, and disability conditions (with limited statistical information); The 
Decennial Census Data (the 2020 report used) provides basic population data and documents change in 
census block groups over the decades. The datasets are processed with unified target identification codes 
for table joins. Similar to the raster processing operations, data are clipped by administrative boundaries 
and water/land lines. In addition, census block groups with zero population, where no vulnerability signals 
can be reflected, are deleted from the final datasets. The final vector data table, in unit of census block 
groups, contains 1) Percentage of infant/child population under 5 (%); 2) Percentage of elderly population 
above 65 (%); 3) Average median household income (in $, inflation factored); 4) Percentage of non-white 
population (%); 5) Percentage of population below poverty line (%); 6) Percentage of disability among 
population of workforce age (20-64, in %).

      In addition to the vector data outcomes for analysis that follows, the NYC Heat Hazard Map provided by 
the city’s Environment Office is re-mapped with the same metrics as other maps in the research, serving as 
a visual reference for difference observation. The social vulnerability map provided by USCDC (in the New 
York area), and obesity rate data provided by NYCCHS are also incorporated as backup references during 
the following stages.



PCA Results ISO Clustering Results
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METHODOLOGY
Raster Method 1: Principle Component Analysis (PCA)

Raster Method 2: ISO Clustering

        Principal Component Analysis (PCA) is a powerful technique used in geospatial analysis to show the 
underlying patterns and structures within multiband raster datasets. It is commonly employed to reduce 
the dimensionality of such datasets while preserving the essential information contained within them. PCA 
operates as an unsupervised method, making it particularly useful for exploring complex relationships 
within data without the need for labeled samples.
        PCA works by transforming the original raster bands into a new set of variables called principal 
components. These components are linear combinations of the original bands and are ordered such that 
the first component captures the maximum variance present in the data, with subsequent components 
capturing progressively less variance. This allows for the identification of the most influential factors driving 
variability within the dataset. The number of principal components chosen determines the dimensionality 
of the output multiband raster, with each component representing a unique aspect of the data’s variability. 
By examining the percentage of variance explained by each component, analysts can gain insights into 
the correlation of different bands in contributing to overall dataset variability. This information is valuable 
for understanding the key drivers behind geospatial phenomena and can guide subsequent analyses or 
decision-making processes.

        ISO Clustering is an unsupervised geospatial machine-learning technique that can be applied 
to determine the characteristics of canopy cover, surface type, and temperature. Similar to PCA, the 
ISO Clustering method predicts the maximum likelihood of classification types with reference to data 
performance. Instead of examining the predominant impact factors in PCA, ISO Clustering method 
creates multiple scenarios with orders where data performs alike. The clusteirng scenarios, which reflect 
comprehensive heat impact, are reclassified into 14 scores , where the higher value reflects scenarios with 
higher heat vulnerability.
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Vector Method 1: Clustering Analysis through Anselin Local Moran’s I

Vector Method 2: Natural Break Reclassification

        Anselin Local Moran’s I is a local spatial autocorrelation statistic based on Moran’s I statistics, which 
is expected to give an indication of the extent of significant spatial clustering of similar values, and acts 
as a proportional indicator of global spatial association (NKU, 1999). Each of the six demographic data 
is used as the point value for Local Moran’s I analysis. The geoprocessing is set with default value of 
maximum study distance and the number of bands. Results from Local Moran’s I will recognize five types 
of clustering based on P values and Z scores (and their relationship), which are high-high clusters, high-low 
outliers, low-high outliers, low-low clusters, and points with no significant relationship (ESRI, 2024).
        Compared to observing absolute values in forming HVI, Anselin Local Moran’s I analysis provides 
researchers with opportunities to detect clusters of risky factor concentrations that better signal real-
world vulnerability. Within the research context, high-high (HH) clusters reflect the most heat-vulnerable 
areas that deserve extra attention, high-low (HL) outliers reflect areas with significant heat vulnerability 
due to certain risky demographic factors (low-high (LH) outliers reflect the opposite situation), while low-
low (LL) clusters reflect regions that are relatively safe from extreme heat. Focusing on extreme value and 
vulnerable region clusters, HH block groups are assigned a score of 7 in the model, HL with 5, LH with 
3, and LL (the safest scenario) assigned 1. Blocks with no significant clusters, with fitting P values, are 
regarded as communities with medium vulnerability conditions and assigned a score of 3.

        Natural break is a set of algorithms developed by ESRI that can document and detect large 
differences in data values automatically and can be used to reclassify data into desired ranks and classes. 
Compared to the equal interval or quantile classification method, natural break classification displays 
the trend and distribution of HVI by levels more obviously, making it easier for researchers to classify 
heat vulnerability (de Smith et al. 2021). The research set 7 classes using the natural break method and 
assigns scores from 1 to 7 to the reclassified demographic data, where 1 reflects the lowest rank (showing 
low risk) and 7 reflects the highest rank (showing highest heat vulnerability).

Weighted HVI Score Modelling
        Based upon previous research works that manually assign weights to different HVI impact factors, the 
research recognizes the prevalent influence of poverty and disability, which are two dominant factors in 
determining individual vulnerability (Johnson et al. 2012). Considering that the existing data on disability 
rates is inconclusive in which child and elderly disability rates are not included, the model assigns the 
heaviest weight (base score x3) on the poverty rate and heavier weight on disability rate (base score x2) 
in the final calculation stage. Average income and non-white composition are unweighted (x1), while the 
influence of child and elderly population percentages are combined (x0.5 each). The total possible score 
for demographic data in the model is thus 56.
        The impact of natural climate and built environment factors have a more profound impact in 
determining heat vulnerability, as shown in studies conducted by Chen et al. (2022) in Taipei and Yoo et 
al. (2023) in Seoul. Following previous simplified weighted models, the research assigns a 2x importance 
for any climate-related and/or built-environment factors, hereby the processed raster data, to the final 
model. The total possible score for natural data in the model is 112, which is eight times of the base 
reclassification score after combining three different impact sources.
        Combining these two sectors, the final model reflects an adjusted Heat Vulnerability Index with a total 
possible score of 168. While detailed influential factors vary, a higher score here shows higher vulnerability 
in the face of heat activites.
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COMPARISON OF HVI CONSTRUCTION METHODS
        To quantifiably compare the combination outcome of two vector methods – Anselin Local Moran’s 
I and Natural Break, and two raster methods – ISO clustering and Principal Component Analysis, the 
research uses a 2x2 matrix that include all potential combination outcomes (one raster method plus one 
vector method). The matrix makes it easier to compare the data performance with the variation of each 
individual method and can demonstrate clearly howA difference in vector or raster methodologies lead to 
different data behaviors. Potential outcomes in the matrix include:

1.	 HVI index using Anselin Local Moran’s I to evaluate scoio-economic factors, and PCA for natural and 
built-environment data.

2.	 HVI index using Anselin Local Moran’s I to evaluate scoio-economic factors, and ISO Clustering for 
natural and built-environment data.

3.	 HVI index using Natural Break Classification to evaluate socio-economic factors, and PCA for natural 
and built-environment data.

4.	 HVI index using Natural Break Classification to evaluate socio-economic factors, and ISO Clustering 
or natural and built-environment data.

        For all the HVI outcomes calculated, a higher value, which is reflected by deeper reddish color on the 
map, shows that the specific area is more vulnerable to heat activities and heat extremes, including but 
are not limited to heat waves, continuous days of high temperature, and non-seasonal heat abnormalities. 

        However, each of these methods applied in the research has slightly different targets of detection:  
While the natural break classification look for the distribution and ranking of absolute values (in single 
census block groups), the Anselin Local Moran’s I detects clustering that reflects regions of concentrated 
heat vulnerability; While the PCA analysis figures out the single most predominant built-environment 
factors that construct the heat index, ISO clustering finds the pattern of data distribution with relevance 
to all of the natural built-environment factors. Therefore, different outcome of HVI patterns symbolize a 
difference in central focus in constructing the index (out of the selection of variables) and will be analyzed 
both individually and collaboratively.

        Visualizing all HVI outcomes through different combination of spatial analysis methods, the research 
will specially focus on the central Bronx area, where all historical heat vulnerability indices have shown 
high heat vulnerability. Zooming into the area of high risk, it is easier and more useful to compare the 
functionality of different methods as well as their outcomes and the social impacts.
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RASTER METHOD 1: PRINCIPAL COMPONENT ANALYSIS
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ALL MAPS 

PCA - MORAN’S I PCA - NATURAL BREAK

        The mapping of HVI across the New York 
City provides a clear visualization of heat 
vulnerability by individual census block groups 
and by regions in five boroughs. All four 
methods witness high HVI values in Central 
and Southern Bronx, Lower-West Manhattan, 
Southern Brooklyn, and Central Queens, 
indicating that communities in these regions 
are more vulnerable to heat-related risks and 
extreme events. Among these areas, Central 
and Southern Bronx has the highest overall 
heat vulnerability, reflecting the urgency of 
heat mitigation efforts to be made in the 
region. By comparison, all four models have 
shown that most census block groups in 

Staten Island have a lower HVI, along with 
area in Eastern Queens and Northwestern 
Bronx, indicating that these neighborhoods 
are more resilient to heat-related risks and 
extreme events. 

       A high HVI shown on the map may be 
caused by different combination of heat-risky 
factors. For example, selected Lower-West 
Manhattan neighborhoods witness a high 
heat vulnerability mostly due the dominant 
presence of impervious surface, very low 
tree canopy coverage, and (causally) a 
high surface temperature. By comparison, 
other regions with a high HVI see a larger 
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ISO - NATURAL BREAKISO - MORAN’S I

contribution of socio-demographic factors, 
which are largely contributed by combinations 
of potentially high percentage of the elderly 
and children population, low median 
household income, high poverty rate, high 
disability rate (across working age population), 
and high non-white population percentage.
 
       Despite similarities in overall trends, 
each model reflects a subtle difference in 
top-ranked census block groups, as well as 
difference in data distribution. Indices built 
upon PCA model shows relatively normally 
distributed data, while the PCA-NaturalBreak 
combination shows a more right-tilting 

distribution pattern with more census block 
groups being categorized into the lower value 
sphere. On the other hand, indices built 
upon ISO model shows a more separated 
data distribution, while the ISO-NaturalBreak 
combination reflects the most separated and 
isolated pattern.
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ALL MAPS - BRONX

Demographic Info 
(Highest HVI CBGs)

PCA - MORAN’S I PCA - NATURAL BREAK

        A more detailed focus on Central and Southern Bronx reflects the minor HVI difference by 
different modelling methods under a larger scale. As shown in the enlarged maps, the four indexing 
methods indicate different census block groups with highest HVI index scores, due to the variance in 
classification methodology and detection targets. The detailed difference and selected characteristics 
of top-scorers are visualized below.

160/168

Block Group 3; Census Tract 401

Total population: 507

Children (<5): 16.8%; Elderly (>65): 47.9%

Non-white: 66.9%; Disability:14.5%

Median Income: $28.638; Poverty:20.7%

151/168

Block Group 1; Census Tract 197

Total population: 2149

Children (<5): 11.2%; Elderly (>65): 9.7%

Non-white: 97.3%; Disability:27.6%

Median Income: $11,787; Poverty:75.4%
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ISO - NATURAL BREAKISO - MORAN’S I

160/168

Block Group 3; Census Tract 177.01

Total population: 2409

Children (<5):11.2%; Elderly (>65): 18.0%

Non-white: 91.3%; Disability: 22.0%

Median Income: $32,935; Poverty: 45.6%

155/168

Block Group 5; Census Tract 67

Total population: 331

Children (<5): 0%; Elderly (>65): 69.8%

Non-white: 83.4%; Disability: 62.3%

Median Income: $10,440; Poverty: 92.7%
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ANALYSIS & COMPARISON
        In addition to visualizing and comparing the distribution of HVI in the New York City, quantitative 
analysis techniques are required to further detect and categorize the similarity and difference in data 
performance across different HVI value. After multiple attempts and discussions, the research chooses to 
use similarity value (contrast), Gi hot-spot detection and comparison, as well as kernel density functions 
to compare the performance and effectiveness of these HVI construction methods more precisely. The 
comparison sets in this chapter (A total of 5) will follow the visualization matrix, which include:

1.	 With both HVI using PCA to analyze natural and built-environment components, comparing between 
Asselin Local Moran’s I versus Natural Break Reclassification in shaping HVI values.

2.	 With both HVI using ISO clustering to analyze natural and built-environment components, comparing 
between Asselin Local Moran’s I versus Natural Break Reclassification in shaping HVI values.

3.	 With both HVI using Anselin Local Moran’s I to analyze socio-economic components, comparing 
between PCA and ISO Clustering in shaping HVI values.

4.	 With both HVI using Natural Break Classification to analyze socio-economic components, comparing 
between PCA and ISO Clustering in shaping HVI values.

        The five models used for forming the comparison matrix can be divided into three categories, 
which are 1) Similarity comparison, in which the similarity between HVI values (per census block groups 
is calculated; 2) Hotspot comparison, in which hotspots for HVI index value (by census block groups) 
are detected and compared; 3) Kernel density comparison, in which the hotspots for HVI index value 
(unbounded) are created and compared. Each way of evaluating data characterless yield different 
outcomes and results.

        This chapter will end with a comprehensive cross-comparison across 4 indexes using ROC curves and 
preset thresholds to reflect on the overall performance difference across all the dataset, and lead to the 
start of the conclusion and policy suggestions chapter.
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Hotspot of Concentration

PCA - MORAN’S I

PCA - NATURAL BREAK ISO - NATURAL BREAK

ISO - MORAN’S I
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Hotspot Change Value

MORAN: PCA vs ISO NB: PCA vs ISO

        The Hot Spot Analysis tool calculates 
the Getis-Ord Gi* statistic for each individual 
score (by census block groups) in the model. 
It works by looking at each feature within the 
context of neighboring features. A census 
block group is considered spatially significant 
with a high value that is surrounded by other 
groups with high values as well. The FDR 
applied adjusted statistical significance 
to account for multiple testing and spatial 
dependency 

        By comparing two hot spot outcomes, the 
hot spot analysis comparison tool examines 
the similarity and association between the 
hot spot result layers with different significant 
level categories. Clearly knowing that models 
do not need to associate with each other, the 
research focuses on observing the potentially 
existing similarities. Using default weight, the 
research processed a visualized comparison 
between four sets of models, documenting 
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ISO: MORAN vs NBPCA: MORAN vs NB

any changes from hot spots to cold spots, or 
vice versa. 

        The direct visualization of HVI hotspots 
by Gi method reflects clearly the clustering of 
cold spots (HVI is relatively high) and hot spots 
(where heat vulnerability is relatively low). 
All of the four outcomes indicate relatively 
heat-resistant areas across most parts of 
the Staten Island, Eastern Queens (near the 
city boundary), and Western/ Northeastern 
Bronx. The area of Central and Southern 
Bronx, Southern Brooklyn, Eastern Brooklyn, 
Northern Manhattan (Harlem and Above), 
Lower-West, and Southern/Central Queens 
see a higher clustering of heat vulnerability. 
While the four outcomes largely resemble 
each other, minor differences, specifically 
across hot spot regions, are obvious: The 
outcome using natural break classification 
and ISO clustering indicates that the 
neighborhood between Long Island City and 

Central Queens has high vulnerability, while 
other models do not; Compared to the other 
three methods, Moran’s I and PCA Anaysis 
outcome detects the lowest numbers of hot 
spot concentration. Most of these differences 
are caused by the detection focus upon 
clustering vs. absolute value, while some 
occur due to classification boundaries that are 
not continuous.

        Comparing between the hot spots and 
cold spots using different methods, it can 
be found that the results are mostly kept 
the same, with some variances that occur 
mostly along the edge of hot spots, which is 
caused by the same two reasons above (as 
data classification boundary was strict, while 
clustering analysis often led to a wider higher 
value concentration). The difference between 
Anselin Local Moran’s I and Natural Breaks 
are more significant compared to cross-raster 
methodological differences.
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Similarity Value        Similarity value comparison is another 
important factor in determining how two 
index models perform alike. Comparing the 
difference of four target sets, a score of 0 to 
1 is given to all census block groups: If many 
corresponding features in both results have 
the same significance level, the value will be 
close to 1. If many corresponding features 
do not have matching significance levels, the 
value will be close to 0 (https://pro.arcgis.
com/en/pro-app/latest/tool-reference/
spatial-statistics/hot-spot-comparison.htm). 
As it would be impossible to reach complete 
data match, a similarity value over 0.8 is 
considered partial match in data, and is 
defined as ‘similar’ in the research.

       Following observtaions during the hotspot 
comparison stage, a large portion of census 
block groups that witness obvious difference 
in similarities are along the edges of hotspot/
coldspot regions due to the methodological 

MORAN: PCA vs ISO NB: PCA vs ISO
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concentration on clustering versus single 
values. The edge effect is strongest in 
the scenario where Anselin Moran’s I is 
compared with Natural Breaks within the 
same PCA environment, showing that PCA 
(as a continuous rather than discrete option) 
outcome does not have a mitigation effect 
in constraining the large marginal difference 
between Moran’s I versus Natural Breaks.

      The comparison of HVI similarities also 
reflects clustering of census block groups 
with high value difference that are not 
along the edges of hotspot/coldspot groups 
(designated as ‘non-edge points of interest’ 
in the research). Despite a difference in 
hotspot/coldspot areas, four comparison 
maps reflect a similar range of non-edge 
points of interest, including eastern Bronx, 
coastal eastern Bronx, upper-east Manhattan, 
southern Downtown Brooklyn, and Eastern 
Brooklyn. This is potentially due to that census 

block groups within these places see more 
than one values (of socio-economic and built 
environment data) that are near the margin 
of different data classes, leading to a large 
difference in their final score outcomes (as 
they fall into different score categories with 
different model combinations). The reason 
can also explain why hotspot/coldspot regions 
near these highly contrasting places are 
different.

ISO: MORAN vs NBPCA: MORAN vs NB
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Kernel Density 

PCA - MORAN’S I

PCA - NATURAL BREAK ISO - NATURAL BREAK

ISO - MORAN’S I
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Density of Difference

MORAN: PCA vs ISO PCA: MORAN vs NB

        The Kernel Density tool is applied to 
calculate the density of heat vulnerability 
index in the city using values of individual 
census tract groups. The research applies 
default density, search radius and weight 
value during the automated calculation 
process. Natural environment differences, 
such as rivers and oceans in the case of New 
York City, act as barriers in the calculation 
process.

        The analytical results from kernel 
density of the HVI scores show similarities 
among all four combinations, supporting the 
previous claim that overall HVI performance 
in the research is close and accurate. The 
kernel density process further demonstrates 
that heat-vulnerable regions are located in 
central Bronx, upper Manhattan, lower-East 
Manhattan, and part of Central Queens, 
echoing with visual outcomes based upon 
census block groups. A smaller difference in 

Kernel density, compared to vector similarity 
evaluation and hotspot change detection, 
reflects that HVI indices proposed in the 
research share an overall similar trend but 
differs in extreme values.

       Due to limited data range and duplicated 
data performance, the report only shows 
two kernel density comparisons showing 
difference between PCA and ISO Clustering 
(Within Moran’s I) and between Moran’s I and 
Natural Breaks (Within PCA). The result shows 
that while general trend in kernel density 
is similar, the detailed value still remains 
different. While comparing absolute value 
is not advisable and useful in kernel raster 
analysis, the two results show that there is 
a larger difference between PCA and ISO 
method (in determining raster) compared to 
vector method differences.
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Cross-Comparison Analysis ROC Curve

        To provide a more comprehensive 
analysis that can cross-compare four 
outcomes, ROC (Receiver Operating 
Characteristic Curve) technique is applied 
to compare the value of HVI by each census 
block groups. In this research, a desirable 
ROC curve is tilted towards the top-left corner 
in the coordinate, showing the capability of 
high true positive rate with low false positive 
incidences, which indicates that the data for 
comparison is highly similar.

       The Area under the ROC Curve (AUC), 
which is an indicator showing data similarity, 
is 0.63 for the comparison between Natural 
Break vs. Moran’s I under the same ISO 
Clustering method, and 0.62 for the 
comparison between PCA vs. ISO under the 
same Natural Break Reclassification method, 
which is slightly higher than random data 
grouping (around 0.5 in the curve), showing 
that the data similarity of HVI is relatively low 

for these two sets of data.

      By contrast, a high similarity can 
be observed between the PCA-Moran 
combination method and the ISO-Moran 
method (AUC 0.97) as well as the PCA-NB 
method (AUC 0.98), showing a relatively 
higher data combability for the PCA-Moran 
model. While the ROC curve can provide a 
clearer comparison between datasets, in this 
research it does not indicate the effectiveness 
or accuracy of HVI evaluation model.
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LIMITATIONS
        Although the research calculates and visualizes multiple sets of Heat Vulnerability Index in the New 
York City with relatively high precision and accuracy, several limitations exist in the research method and 
outcome, which require further studies to be conducted for a more comprehensive analysis. Limitations in 
the study include:

1.	 The natural/built environment and demographic data to be included in the model weighting process, 
along with the weighting distribution, are selected and chosen based upon established models and 
previous research, which may be biased and incomprehensive, and may yield HVI scores that do not 
fully reflect heat risk and vulnerability.

2.	 Neither the PCA nor the ISO Clustering method used for model construction has gone through 
autocorrelation analysis and covariate elimination process (which is usually conducted with machine 
learning techniques) due to time and scale restrictions, which may add inaccuracy in the unsupervised 
categorization process, negatively impacting the final score outcome.

3.	 The HVI index, regardless of methods used, is only a rough estimate of the heat vulnerability for an 
average demographic profile in certain region. It does not represent how vulnerable individuals (with 
different characteristics) are in face of extreme heat activities. Therefore, policies and interventions 
shall not be made solely based upon the HVI index.

4.	 Only one weighting structure is applied (for each related risk factors) during the indexing stage due to 
time and scale limitations. The limited weighting diagram may increase the bias in the model with fewer 
options for viewer/ policymakers to choose from in the final stage. Future research should include 
multiple sets of weighting diagrams or correlation scores to construct a more comprehensive index.
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      Extreme heat events and extended heat 
waves in the urban area has become a major 
climate challenge in the New York City, which 
is exacerbated by climate change, global 
temperature rise, and urban island effect. 
The research constructs a model to reflect 
community-level heat vulnerability in the 
city. To compare between different spatial 
analytical methods, the research applies 
Principle Component Analysis (PCA), ISO 
Clustering, Natural Break Reclassification, and 
Anselin Local Moran’s I and provides four sets 
of HVI outcomes with different combinations. 
All four models yield similar outcomes 
showing that communities in Central Bronx, 
Lower-West Manhattan, Southern Brooklyn 
and Central Queens are highly vulnerable to 
heat extremes but are different in detailed 
scores and clustering performance. Difference 
across the models is caused by different ways 
of categorization, data boundary differences, 
and the difference in clustering-detection 
methods versus absolute-value-based 
methods. While each model has its focus and 
cannot be compared through its effectiveness 
or accuracy, the HVI index constructed upon 
PCA and Local Moran’s I show a relatively 
normal data distribution, well-allocated 
data values, and the capability to track 
regional clustering. Therefore, the PCA-Moran 
model is recommended for most analytical 
scenarios, as results of clustering can reflect 
real-world situation more accurately. By 
contrast, the ISO-Moran model can better 
reflect differences in areas with lower heat 
vulnerability, which proves useful for more 
detailed analysis in city boroughs such as 
Queens or Staten Island.

      The research is significant in mitigating 
heat impacts in the city as it provides 
evaluation and estimation of HVIs with a 
greater level of precision (in census block 

CONCLUSION
groups) compared to the original official 
map used by the city (in census blocks). 
In addition, the models point out multiple 
communities with very high vulnerability with 
precision, which enables specific intervention 
and emergency responses during sudden 
heat events. A comparison between different 
spatial analytical methodologies also shows 
a variety of data performances and model 
focuses, providing insights for future research 
in the area. More importantly, the methods 
of calculating HVI index and evaluating heat 
vulnerability can be applied globally and be 
easily adopted in other cities with similar heat-
related issues.

       It is also recommended that users of 
the HVI model should compared among all 
potential method combinations and their 
outcomes between making observations 
and decisions. Considering conclusions 
and insights above, it is suggested that 
policymakers and urban planners in the NYC 
should prioritize their resources to mitigate 
heat in Central Bronx, Lower-West Manhattan, 
Southern Brooklyn, and Central Queens, while 
the coverage of heat-mitigation strategies 
should be enlarged (if funding permits) to 
the scales which all HVI index models agree 
on to eliminate potential biases and errors. 
A proper emergency response management 
system, along with intervention strategies 
such as provision of air-conditioning, issue of 
heat warnings, construction of heat shelter (or 
use of existing public spaces), and facilitation 
of mutual-help in the community, can better 
help the city mitigate heat impacts and reduce 
heat vulnerability in the future.
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